Climate - REMIND

From IAMC-Documentation
Jump to: navigation, search


Model Documentation - REMIND
Corresponding documentation
Model information
Institution Potsdam Institut für Klimafolgenforschung (PIK)
Concept Hybrid

Hybrid model that couples an economic growth model with a detailed energy system model and a simple climate model.

Solution method Inter-temporal optimization that maximizes cumulated discounted global welfare: Ramsey-type growth model with Negishi approach to regional welfare aggregation.
Anticipation Perfect Foresight

By default, REMIND is coupled with the MAGICC 6 climate model to translate emissions into changes in atmospheric composition, radiative forcing and temperature increase. Due to numerical complexity, after running REMIND we perform the evaluation of climate change using MAGICC. Iterative adjustment of emission constraints or carbon taxes allows meeting specific temperature or radiative forcing limits in case of mitigation scenarios (see Section “Policy”).

In addition, REMIND includes a reduced-form climate model similar to the one used in DICE (Nordhaus and Boyer 2000) which can be used within the REMIND optimization to enable direct formulation of temperature or radiative forcing targets in climate mitigation scenarios. It comprises (1) an impulse-response function with three time scales for the carbon cycle, (2) an energy balance temperature model with a fast mixed layer, and (3) a slow deep ocean temperature box. Equations in the carbon-cycle temperature model describe concentration and radiative forcing that result from CH4, N2O, sulfate aerosols, black carbon, and organic carbon [1]. The climate module determines the atmospheric concentrations of CO2, CH4, and N2O and computes the resulting radiative forcing and mean temperature at the global level. Its key parameters are calibrated to reproduce MAGICC, with a climate sensitivity of around 3.0°C.

REMIND does not account for climate damages.

























  1. Tanaka K, Kriegler E (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2)