GHGs - IMAGE

From IAMC-Documentation
Jump to: navigation, search
Model Documentation - IMAGE
Corresponding documentation
Model information
Institution PBL Netherlands Environmental Assessment Agency (PBL), Netherlands, http://www.pbl.nl/en., Utrecht University (UU), Netherlands, https://www.uu.nl/en.
Solution concept Partial equilibrium (price elastic demand)
Solution method Simulation
Anticipation Simulation modelling framework, without foresight. However, a simplified version of the energy/climate part of the model (called FAIR) can be run prior to running the framework to obtain data for climate policy simulations.

Emission abatement

Emissions from energy, industry, agriculture, waste and land-use sources are also expected to vary in future years, as a result of climate policy. This is described using abatement coefficients, the values of which depend on the scenario assumptions and the stringency of climate policy described in the climate policy component. In scenarios with climate change or sustainability as the key feature in the storyline, abatement is more important than in business-as-usual scenarios. Abatement factors are used for CH4 emissions from fossil fuel production and transport, N2O emissions from transport, CH4 emissions from enteric fermentation and animal waste, and N2O emissions from animal waste according to the IPCC method. These abatement files are calculated in the IMAGE climate policy sub-model FAIR by comparing the costs of non-CO2 abatement in agriculture and other mitigation options.

References

  1. ^  |  Malte Meinshausen, SCB Raper, TML Wigley (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration. Atmospheric Chemistry and Physics, 11 (4), 1417-1456. http://dx.doi.org/10.5194/acp-11-1417-2011
  2. ^  |  Wigley TML Meinshausen M, Raper SCB (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications. Atmospheric Chemistry and Physics. Atmospheric Chemistry and Physics, 11 (4), 1457-1471.
  3. a b  |  Miwa Ngara K T S. Eggleston L. Buendia, K Tanabe (2007). Guidelines for national greenhouse gas inventories. Japan: Prepared by the National Greenhouse Gas Inventories Programme, IGES,.www.ipcc-nggip.iges.or.jp/public/2006gl/index.html. 
  4. ^  |  Olivia Braspenning Radu, Maarten van den Berg, Zbigniew Klimont, Sebastiaan Deetman, Greet Janssens-Maenhout, Marilena Muntean, Chris Heyes, Frank Dentener, Detlef P van Vuuren (2016). Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Atmospheric Environment, 140 (), 577 - 591. http://dx.doi.org/http://dx.doi.org/10.1016/j.atmosenv.2016.05.021