References - REMIND

From IAMC-Documentation
Jump to: navigation, search

Model Documentation - REMIND
Corresponding documentation
Model information
Institution Potsdam Institut für Klimafolgenforschung (PIK)
Concept Hybrid

Hybrid model that couples an economic growth model with a detailed energy system model and a simple climate model.

Solution method Inter-temporal optimization that maximizes cumulated discounted global welfare: Ramsey-type growth model with Negishi approach to regional welfare aggregation.
Anticipation Perfect Foresight

Aguilera RF, Eggert RG, C. C. GL, Tilton JE (2009) Depletion and the Future Availability of Petroleum Resources. The Energy Journal Volume 30:141–174.

Amann M, Bertok I, Borken-Kleefeld J, et al (2011) Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software 26:1489–1501. doi: 10.1016/j.envsoft.2011.07.012

Ansolabehere S, Beer J, Deutch J, et al (2007) The Future of Coal: An Interdisciplinary MIT Study. Massachusetts Institute of Technology, Cambridge, Massachusetts

Askari H, Krichene N (2010) An oil demand and supply model incorporating monetary policy. Energy 35:2013–2021. doi: 10.1016/

Bauer N (2005) Carbon capture and sequestration: An option to buy time? Ph.D. Thesis, University of Potsdam

Bauer N, Baumstark L, Leimbach M (2012a) The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds. Climatic Change 114:145–168. doi: 10.1007/s10584-011-0129-2

Bauer N, Brecha RJ, Luderer G (2012b) Economics of nuclear power and climate change mitigation policies. PNAS 109:16805–16810. doi: 10.1073/pnas.1201264109

Bauer N, Edenhofer O, Kypreos S (2008) Linking energy system and macroeconomic growth models. CMS 5:95–117. doi: 10.1007/s10287-007-0042-3

Bauer N, Hilaire J, Brecha RJ, et al (under review) Assessing global fossil fuel availability in a scenario framework, in preparation.

Bauer N, Mouratiadou I, Luderer G, et al (2013) Global fossil energy markets and climate change mitigation – an analysis with REMIND. Climatic Change in press. doi: 10.1007/s10584-013-0901-6

BGR (2010) Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2010 - Kurzstudie. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany

Brooke A, Kendrick D, Meeraus M (1992) GAMS - A User’s Guide, Release 2.25. The Scientific Press, San Francisco

Brown D, Gassner M, Fuchino T, Marechal F (2009) Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. Applied Thermal Engineering 29:2137–2152.

Brückl O (2005) Global Potential for electricity production from wind energy.

Chen C, Rubin ES (2009) CO2 control technology effects on IGCC plant performance and cost. Energy Policy 37:915–924. doi: 10.1016/j.enpol.2008.09.093

Chum H, Faaij A, Moreira J, et al (2011) Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P.

Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)],. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,

Dahl C, Duggan TE (1998) Survey of price elasticities from economic exploration models of US oil and gas supply. Journal of Energy Finance & Development 3:129–169. doi: 10.1016/S1085-7443(99)80072-6

Dellink et al. (2015) Long-term growth projections in Shared Socioeconomic Pathways. Submitted to Global Environmental Change (submitted).

Drud AS (1994) CONOPT - A Large-Scale GRG Code. ORSA Journal on Computing 6:207–216.

EDGAR (2011) Global Emissions EDGAR v4.2. Accessed 25 Jan 2013

EEA (2009) Europe’s onshore and offshore wind energy potential - An assessment of environmental and economical constraints.

Fargione J, Hill J, Tilman D, et al (2008) Land Clearing and the Biofuel Carbon Debt. Science 319:1235–1238. doi: 10.1126/science.1152747

Gül T, Kypreos S, Barreto L (2007) Hydrogen and Biofuels – A Modelling Analysis of Competing Energy Carriers for Western Europe. In: Proceedings of the World Energy Congress “Energy Future in an Interdependent World”. 11–15 November 2007, Rome, Italy.

Haberl H, Beringer T, Bhattacharya SC, et al (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2:394–403. doi: 10.1016/j.cosust.2010.10.007

Hamelinck C (2004) Outlook for advanced biofuels. Ph.D. Thesis, University of Utrecht

Heckscher EF, Ohlin B, Flam H, Flanders MJ (1991) Heckscher-Ohlin trade theory. MIT Press, Cambridge, Massachusetts

Herfindahl OC (1967) Depletion and Economic Theory. In: Extractive Resources and Taxation. M. Gaffney (Ed.), University of Wisconsin Press, Madison, Wisconsin,

Hoogwijk M (2004) On the global and regional potential of renewable energy sources. Ph.D. Thesis, Universiteit Utrecht, Faculteit Scheikunde

Hoogwijk M, Graus W (2008) Global potential of renewable energy sources: a literature assessment. Ecofys

Horlacher H-B (2003) Globale Potenziale der Wasserkraft. Externe Expertise für das WBGU-Hauptgutachten 2003 “Welt im Wandel: Energiewende zur Nachhaltigkeit.” WBGU, Heidelberg, Germany

IEA (2008a) World Energy Outlook 2008. International Energy Agency

IEA (2009) World Energy Outlook 2009. International Energy Agency, Paris, France

IEA (2007a) Energy Balances of OECD Countries. International Energy Agency, Paris

IEA (2007b) Energy Balances of non-OECD Countries. International Energy Agency, Paris

IEA (2008b) CO2 Capture and Storage – A key carbon abatement option. International Energy Agency

IHS CERA (2012) Upstream Capital Cost Index (UCCI) and Upstream Operating Cost Index (UOCI). In: IHS Indexes. Accessed 20 Nov 2012

Iwasaki W (2003) A consideration of the economic efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy 28:939–944.

Junginger HM, Lako P, Lensink S, et al (2008) Technological learning in the energy sector. MNP

KC S, Lutz W (2016) The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change in press. doi: 10.1016/j.gloenvcha.2014.06.004

Klein D, Humpenöder F, Bauer N, et al (2014) The global economic long-term potential of modern biomass in a climate-constrained world. Environ Res Lett 9:074017. doi: 10.1088/1748-9326/9/7/074017

Klimantos P, Koukouzas N, Katsiadakis A, Kakaras E (2009) Air-blown biomass gasification combined cycles: System analysis and economic assessment. Energy 34:708–714.

Klimont Z, Hoglund L, Heyes C, et al (in prep.b) Global scenarios of air pollutants and methane: 1990-2050.

Klimont Z, Kupiainen K, Heyes C, et al (in prep.a) Global anthropogenic emissions of particulate matter including black carbon.

Krichene N (2002) World crude oil and natural gas: a demand and supply model. Energy Economics 24:557–576. doi: 10.1016/S0140-9883(02)00061-0

Kyle P, Davies EGR, Dooley JJ, et al (2013) Influence of climate change mitigation technology on global demands of water for electricity generation. International Journal of Greenhouse Gas Control 13:112–123. doi: 10.1016/j.ijggc.2012.12.006

Leimbach M, Bauer N, Baumstark L, et al (2010a) Technological Change and International Trade - Insights from REMIND-R. The Energy Journal 31:109–136. doi: 10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5

Leimbach M, Bauer N, Baumstark L, Edenhofer O (2010b) Mitigation Costs in a Globalized World: Climate Policy Analysis with REMIND-R. Environ Model Assess 15:155–173. doi: 10.1007/s10666-009-9204-8

Leimbach M, Baumstark L, Luderer G (2015) The role of time preferences in explaining long-term pattern of international trade. Global Economy Journal 15:83–106. doi: 10.1515/gej-2014-0035

Leimbach M, Schultes A, Baumstark L, et al (2016) Solution algorithms of large‐scale Integrated Assessment models on climate change. Annals of Operations Research. doi:10.1007/s10479-016-2340-z.

Lotze-Campen H, Müller C, Bondeau A, et al (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics 39:325–338. doi: 10.1111/j.1574-0862.2008.00336.x

Lotze-Campen H, Popp A, Beringer T, et al (2010) Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling 221:2188–2196. doi: 10.1016/j.ecolmodel.2009.10.002

Lu X, McElroy MB, Kiviluoma J (2009) Global potential for wind-generated electricity. PNAS 106:10933–10938. doi: 10.1073/pnas.0904101106

Lucas PL, van Vuuren DP, Olivier JGJ, den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science & Policy 10:85–103. doi: 10.1016/j.envsci.2006.10.007

Luderer G, Krey V, Calvin K, et al (2014) The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123:427–441. doi: 10.1007/s10584-013-0924-z

Luderer G, Leimbach M, Bauer N, et al (2013) Description of the REMIND Model (Version 1.5). SSRN Working Paper 2312844

Luderer G, Pietzcker RC, Kriegler E, et al (2012) Asia’s role in mitigating climate change: A technology and sector specific analysis with ReMIND-R. Energy Economics 34:S378–S390.

Macknick J, Newmark R, Heath G, Hallett KC (2011) A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. National Renewable Energy Laboratory, Golden, Colorado

Macknick J, Sattler, S., Averyt, K., et al (2012) The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environmental Research Letters 7:045803.

Manne A, Mendelsohn R, Richels R (1995) MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi: 10.1016/0301-4215(95)90763-W

Manne AS, Rutherford TF (1994) International Trade in Oil, Gas and Carbon Emission Rights: An Intertemporal General Equilibrium Model. The Energy Journal Volume15:57–76.

Meinshausen M, S. C. B. Raper, T. M. L. Wigley (2011a) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6–Part 1: Model description and calibration. Atmos Chem Phys 11:1417–1456. doi: 10.5194/acp- 11-1417-2011

Meinshausen M, Wigley TML, Raper SCB (2011b) Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications. Atmos Chem Phys 11:1457–1471. doi: 10.5194/acp-11-1457-2011

Mouratiadou I, Bevione M, Bijl D, et al (submitted) The water-electricity nexus in deep decarbonization scenarios: a multi-model assessment.

Mouratiadou I, Biewald A, Pehl M, et al (2016) The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environmental Science & Policy 64:48–58. doi: 10.1016/j.envsci.2016.06.007

NEA (2009) Uranium 2009: Resources, Production and Demand. OECD

Negishi T (1972) General equilibrium theory and international trade. North-Holland Publishing Company Amsterdam, London

Neij L, Andersen PD, Durstewitz M, et al (2003) Experience Curves: A Tool for Energy Policy Assessment (Extool Final Report). Lund University, Risø National Laboratory, ISET

Nitsch J, Krewitt W, Nast M, et al (2004) Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland (Kurzfassung). BMU, DLR, ifeu, Wuppertal Institut, Stuttgart, Heidelberg, Wuppertal

Nordhaus WD, Boyer J (2000) Warming the World: Economic Models of Global Warming. MIT Press, Cambridge, MA

Nordhaus WD, Yang Z (1996) A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies. The American Economic Review 86:741–765.

O’Neill BC, Kriegler E, Riahi K, et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122:387–400. doi: 10.1007/s10584-013-0905-2

Pietzcker RC, Longden T, Chen W, et al (2014a) Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 64:95–108. doi: 10.1016/

Pietzcker RC, Stetter D, Manger S, Luderer G (2014b) Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Applied Energy 135:704–720. doi: 10.1016/j.apenergy.2014.08.011

Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change 20:451–462. doi: 10.1016/j.gloenvcha.2010.02.001

Ragettli M (2007) Cost outlook for the production of biofuels. Diploma Thesis, Swiss Federal Institute of Technology

Rogner H-H (1997) An assessment of world hydrocarbon ressources. Annual Review of Energy and the Environment 22:217–262. doi: 10.1146/

Rogner H-H, Aguilera RF, Archer CL, et al (2012) Chapter 7: Energy Resources and Potentials. In: Zou J (ed) Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK, pp 425–512

Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454. doi: 10.1016/j.enpol.2007.03.009

Schulz T (2007) Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis. PhD Thesis, Swiss Federal Institute of Technology (ETH)

Schwanitz VJ, Piontek F, Bertram C, Luderer G (2014) Long-term climate policy implications of phasing out fossil fuel subsidies. Energy Policy 67:882–894. doi: 10.1016/j.enpol.2013.12.015

Searchinger T, Heimlich R, Houghton RA, et al (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 319:1238–1240. doi: 10.1126/science.1151861

Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technology 101:1570–1580. doi: 10.1016/j.biortech.2009.11.046

Strefler J, Luderer G, Aboumahboub T, Kriegler E (2014) Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Climatic Change. doi: 10.1007/s10584-014-1188-y

Sullivan P, Krey V, Riahi K (2013) Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Reviews 1:157–163. doi: 10.1016/j.esr.2013.01.001

Takeshita T, Yamaji K (2008) Important roles of Fischer-Tropsch synfuels in the global energy future. Energy Policy 36:2773–2784. doi:

Tanaka K, Kriegler E (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2).

Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renewable Energy 32:1006–1019. doi: 10.1016/j.renene.2006.04.009

Van Vuuren D, Stehfest E, Gernaat DEHJ, et al (under review) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm.

WGBU (2003) Welt im Wandel: Energiewende zur Nachhaltigkeit (WB der B globale Umweltveränderung, Ed.).