REMIND-MAgPIE: Difference between revisions

From IAMC-Documentation
Jump to navigation Jump to search
No edit summary
(Replaced content with "{{ModelTemplate}} {{ModelInfoTemplate |Name=REMIND-MAgPIE |Version=2.0-4.1 |ModelLink=https://www.pik-potsdam.de/research/sustainable-solutions/models/remind |participatio...")
Tag: Replaced
Line 13: Line 13:
|country=Germany
|country=Germany
}}
}}
{{ScopeMethodTemplate
{{ScopeMethodTemplate}}
|ModelTypeOption=CGE
{{Socio-economicTemplate}}
|GeographicalScopeOption=Global
{{Macro-economyTemplate}}
|Objective=REMIND is a global multi-regional model incorporating the economy,
{{EnergyTemplate}}
the climate system and a detailed representation of the energy sector.
{{Land-useTemplate}}
REMIND allows for a sophisticated analysis of technology options and
{{EmissionClimateTemplate}}
policy proposals for climate mitigation. It accounts for economic and energy investments in the model regions, and interregional trade in goods, energy carriers and emissions allowances.
|SolutionConceptOption=General equilibrium (closed economy)
|SolutionConcept=MAgPIE: partial equilibrium model of the agricultural sector;
|SolutionHorizon=REMIND: Inter-temporal (foresight); MAgPIE: recursive-dynamic;
|SolutionMethodOption=Optimization
|SolutionMethod=MAgPIE: cost minimization;
|BaseYear=2005
|TimeSteps=5
|Horizon=2005-2100
|Nr=12
|PoliciesOption=Emission tax; Emission pricing; Cap and trade; Fuel taxes; Fuel subsidies; Portfolio standard; Capacity targets; Land protection; Pricing carbon stocks
|Concept=Hybrid
Hybrid model that couples an economic growth model with a detailed energy system model and a simple climate model.
|PolicyImplementation=Pareto-optimal achievement of policy targets on temperature, radiative forcing, GHG concentration, cumulative carbon budgets, or CO2 emissions over time under full when- and where-flexibility. Implementation of permit allocation rules among regions. Possibility of pre-specified carbon tax pathway. Fossil fuel subsidies and taxes.
}}
{{Socio-economicTemplate
|PopulationOption=Yes (exogenous)
|GDPOption=Yes (exogenous)
|EmploymentRateOption=Yes (exogenous)
|LaborProductivityOption=Yes (exogenous)
|TotalFactorProductivityOption=Yes (exogenous)
|AutonomousEnergyEfficiencyImprovementsOption=Yes (exogenous)
|ExogenousDriverOption=Labour Productivity
|ExogenousDriverText=Calibration of energy efficiency parameters of the production function.
Endogenous learning-by-doing for wind and solar power as well as electric and fuel cell vehicle technologies (global learning curve, internalized spillovers).
|DevelopmentOption=GDP per capita
}}
{{Macro-economyTemplate
|TradeOption=Coal; Oil; Gas; Uranium; Bioenergy crops; Food crops; Capital; Emissions permits; Non-energy goods
|Trade=Energy goods;
|CostMeasureOption=GDP loss; Welfare loss; Consumption loss
|CoalRUOption=Yes (supply curve)
|ConventionalOilRUOption=Yes (supply curve)
|UnconventionalOilRUOption=Yes (supply curve)
|ConventionalGasRUOption=Yes (supply curve)
|UnconventionalGasRUOption=Yes (supply curve)
|UraniumRUOption=Yes (supply curve)
|BioenergyRUOption=Yes (supply curve)
|WaterRUOption=Yes (process model)
|EnergyESOption=Yes (physical)
|AgricultureESOption=Yes (physical)
|EconomicSectorText=The macro-economic part contains a single sector representation of the entire economy. A generic final good is produced from capital, labor, and different final energy types.
|EnergyEnd-useTCOption=Endogenous technological change
}}
{{EnergyTemplate
|EnergyTechnologySubstitutabilityOption=Mostly high substitutability
|ElectricityTechnologyOption=Coal w/o CCS; Coal w/ CCS; Gas w/o CCS; Gas w/ CCS; Oil w/o CCS; Bioenergy w/o CCS; Bioenergy w/ CCS; Geothermal power; Nuclear power; Solar power; Solar power-central PV; Solar power-CSP; Wind power; Hydroelectric power
|HydrogenProductionOption=Electrolysis; Coal to hydrogen w/o CCS; Coal to hydrogen w/ CCS; Natural gas to hydrogen w/o CCS; Natural gas to hydrogen w/ CCS; Biomass to hydrogen w/o CCS; Biomass to hydrogen w/ CCS
|RefinedLiquidsOption=Bioliquids w/o CCS; Bioliquids w/ CCS; Coal to liquids w/o CCS; Coal to liquids w/ CCS; Oil refining
|RefinedGasesOption=Coal to gas w/o CCS; Biomass to gas w/o CCS
|HeatGenerationOption=CHP (coupled heat and power); Coal heat; Natural gas heat; Oil heat; Biomass heat; Geothermal heat
|GridInfrastructureText=Generalized transmission and distribution costs are included, but not modeled on an explicit spatial level.
Regionalized additional grid and storage costs for renewable integration are included.
|PassengerTransportationOption=Light Duty Vehicles (LDVs); Electric LDVs; Hydrogen LDVs; Gasoline LDVs; Passenger trains
|FreightTransportationOption=Heavy duty vehicles
|ResourceUseOption=Coal; Oil; Gas; Uranium; Biomass
|ConversionTechnologyOption=CHP; Heat pumps; Hydrogen; Fuel to gas; Fuel to liquid
|ConversionTechnology=Heat plants;
|GridInfrastructureOption=Electricity; Gas; Heat; CO2; H2
|TechnologySubstitutionOption=Discrete technology choices; Expansion and decline constraints; System integration constraints
|TechnologySubstitutionText=Expansion and decline, and system integration are influenced though cost markups rather than constraints.
|EnergyServiceSectorOption=Transportation; Industry; Residential and commercial
|EnergyServiceSectorText=Industry and Residential and Commercial are not treated separately but represented jointly by one Stationary sector (referred to as 'Other Sector').
}}
{{Land-useTemplate
|LandCoverOption=Cropland; Forest; Pasture; Cropland irrigated; Cropland food crops; Cropland feed crops; Cropland energy crops; Managed forest; Natural forest; Built-up area
|AgricultureAndForestryDemandsOption=Agriculture food; Agriculture food crops; Agriculture food livestock; Agriculture feed; Agriculture feed crops; Agriculture feed livestock; Agriculture non-food; Agriculture non-food crops; Agriculture non-food livestock; Agriculture bioenergy; Agriculture residues
|AgriculturalCommoditiesOption=Wheat; Rice; Oilseeds; Other coarse grains; Sugar crops; Ruminant meat; Non-ruminant meat and eggs; Dairy products
|Land-useText=Bioenergy supply from the land-use sector is represented by an emulation of the land-use model MAgPIE.
The emulator focuses on bioenergy supply costs and agricultural emissions.
}}
{{EmissionClimateTemplate
|GHGOption=HFCs; CFCs; SF6; CO2 fossil fuels; CO2 cement; CO2 land use; CH4 energy; CH4 land use; CH4 other; N2O energy; N2O land use; N2O other
|PollutantOption=CO energy; CO land use; CO other; NOx energy; NOx land use; NOx other; VOC energy; VOC land use; VOC other; SO2 energy; SO2 land use; SO2 other; BC energy; BC land use; BC other; OC energy; OC land use; OC other; NH3 energy; NH3 land use
|PollutantText=Ozone is not modeled as emission, but is an endogenous result of atmospheric chemistry.
|ClimateIndicatorOption=Temperature change; Concentration: CO2; Concentration: CH4; Concentration: N2O; Concentration: Kyoto gases; Radiative forcing: CO2; Radiative forcing: CH4; Radiative forcing: N2O; Radiative forcing: F-gases; Radiative forcing: Kyoto gases; Radiative forcing: aerosols; Radiative forcing: AN3A; Radiative forcing: total
|ClimateIndicator=Radiative Forcing (Land Albedo) - Yes (exogenous);
|CarbonDioxideRemovalOption=Bioenergy with CCS; Afforestation; Direct air capture; Enhanced weathering
|Co-LinkagesOption=Energy security: Fossil fuel imports & exports (region); Water availability
}}

Revision as of 18:17, 26 August 2020

The reference card is a clearly defined description of model features. The numerous options have been organized into a limited amount of default and model specific (non default) options. In addition some features are described by a short clarifying text.

Legend:

  • not implemented
  • implemented
  • implemented (not default option)

A page refresh may be needed after modifying data.


About

Name and version

REMIND 1.5


Institution

Potsdam Institut für Klimafolgenforschung (PIK), Germany, https://www.pik-potsdam.de.

Documentation

REMIND-MAgPIE documentation consists of a referencecard and detailed model documentation




Model scope and methods

Model type

  • Integrated assessment model
  • Energy system model
  • CGE
  • CBA-integrated assessment model

Geographical scope

  • Global
  • Regional


Solution concept

  • Partial equilibrium (price elastic demand)
  • Partial equilibrium (fixed demand)
  • General equilibrium (closed economy)

Solution horizon

  • Recursive dynamic (myopic)
  • Intertemporal optimization (foresight)

Solution method

  • Simulation
  • Optimization


Temporal dimension

Base year:, time steps:, horizon:

Spatial dimension

Number of regions:

Time discounting type

  • Discount rate exogenous
  • Discount rate endogenous

Policies

  • Emission tax
  • Emission pricing
  • Cap and trade
  • Fuel taxes
  • Fuel subsidies
  • Feed-in-tariff
  • Portfolio standard
  • Capacity targets
  • Emission standards
  • Energy efficiency standards
  • Agricultural producer subsidies
  • Agricultural consumer subsidies
  • Land protection
  • Pricing carbon stocks


Socio-economic drivers

Population

  • Yes (exogenous)
  • Yes (endogenous)

Population age structure

  • Yes (exogenous)
  • Yes (endogenous)

Education level

  • Yes (exogenous)
  • Yes (endogenous)

Urbanization rate

  • Yes (exogenous)
  • Yes (endogenous)

GDP

  • Yes (exogenous)
  • Yes (endogenous)

Income distribution

  • Yes (exogenous)
  • Yes (endogenous)

Employment rate

  • Yes (exogenous)
  • Yes (endogenous)

Labor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Total factor productivity

  • Yes (exogenous)
  • Yes (endogenous)

Autonomous energy efficiency improvements

  • Yes (exogenous)
  • Yes (endogenous)



Macro-economy

Economic sector

Industry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Energy

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Transportation

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Residential and commercial

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Agriculture

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)

Forestry

  • Yes (physical)
  • Yes (economic)
  • Yes (physical & economic)


Macro-economy

Trade

  • Coal
  • Oil
  • Gas
  • Uranium
  • Electricity
  • Bioenergy crops
  • Food crops
  • Capital
  • Emissions permits
  • Non-energy goods

Cost measures

  • GDP loss
  • Welfare loss
  • Consumption loss
  • Area under MAC
  • Energy system cost mark-up

Categorization by group

  • Income
  • Urban - rural
  • Technology adoption
  • Age
  • Gender
  • Education level
  • Household size

Institutional and political factors

  • Early retirement of capital allowed
  • Interest rates differentiated by country/region
  • Regional risk factors included
  • Technology costs differentiated by country/region
  • Technological change differentiated by country/region
  • Behavioural change differentiated by country/region
  • Constraints on cross country financial transfers

Resource use

Coal

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Oil

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Conventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Unconventional Gas

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Uranium

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Bioenergy

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Water

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Raw Materials

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)

Land

  • Yes (fixed)
  • Yes (supply curve)
  • Yes (process model)


Technological change

Energy conversion technologies

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Energy End-use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Material Use

  • No technological change
  • Exogenous technological change
  • Endogenous technological change

Agriculture (tc)

  • No technological change
  • Exogenous technological change
  • Endogenous technological change



Energy


Energy technology substitution

Energy technology choice

  • No discrete technology choices
  • Logit choice model
  • Production function
  • Linear choice (lowest cost)
  • Lowest cost with adjustment penalties

Energy technology substitutability

  • Mostly high substitutability
  • Mostly low substitutability
  • Mixed high and low substitutability

Energy technology deployment

  • Expansion and decline constraints
  • System integration constraints

Energy

Electricity technologies

  • Coal w/o CCS
  • Coal w/ CCS
  • Gas w/o CCS
  • Gas w/ CCS
  • Oil w/o CCS
  • Oil w/ CCS
  • Bioenergy w/o CCS
  • Bioenergy w/ CCS
  • Geothermal power
  • Nuclear power
  • Solar power
  • Solar power-central PV
  • Solar power-distributed PV
  • Solar power-CSP
  • Wind power
  • Wind power-onshore
  • Wind power-offshore
  • Hydroelectric power
  • Ocean power

Hydrogen production

  • Coal to hydrogen w/o CCS
  • Coal to hydrogen w/ CCS
  • Natural gas to hydrogen w/o CCS
  • Natural gas to hydrogen w/ CCS
  • Oil to hydrogen w/o CCS
  • Oil to hydrogen w/ CCS
  • Biomass to hydrogen w/o CCS
  • Biomass to hydrogen w/ CCS
  • Nuclear thermochemical hydrogen
  • Solar thermochemical hydrogen
  • Electrolysis

Refined liquids

  • Coal to liquids w/o CCS
  • Coal to liquids w/ CCS
  • Gas to liquids w/o CCS
  • Gas to liquids w/ CCS
  • Bioliquids w/o CCS
  • Bioliquids w/ CCS
  • Oil refining

Refined gases

  • Coal to gas w/o CCS
  • Coal to gas w/ CCS
  • Oil to gas w/o CCS
  • Oil to gas w/ CCS
  • Biomass to gas w/o CCS
  • Biomass to gas w/ CCS

Heat generation

  • Coal heat
  • Natural gas heat
  • Oil heat
  • Biomass heat
  • Geothermal heat
  • Solarthermal heat
  • CHP (coupled heat and power)

Grid Infra Structure

Electricity

  • Yes (aggregate)
  • Yes (spatially explicit)

Gas

  • Yes (aggregate)
  • Yes (spatially explicit)

Heat

  • Yes (aggregate)
  • Yes (spatially explicit)

CO2

  • Yes (aggregate)
  • Yes (spatially explicit)

Hydrogen

  • Yes (aggregate)
  • Yes (spatially explicit)


Energy end-use technologies

Passenger transportation

  • Passenger trains
  • Buses
  • Light Duty Vehicles (LDVs)
  • Electric LDVs
  • Hydrogen LDVs
  • Hybrid LDVs
  • Gasoline LDVs
  • Diesel LDVs
  • Passenger aircrafts

Freight transportation

  • Freight trains
  • Heavy duty vehicles
  • Freight aircrafts
  • Freight ships

Industry

  • Steel production
  • Aluminium production
  • Cement production
  • Petrochemical production
  • Paper production
  • Plastics production
  • Pulp production

Residential and commercial

  • Space heating
  • Space cooling
  • Cooking
  • Refrigeration
  • Washing
  • Lighting


Land-use

Land cover

  • Cropland
  • Cropland irrigated
  • Cropland food crops
  • Cropland feed crops
  • Cropland energy crops
  • Forest
  • Managed forest
  • Natural forest
  • Pasture
  • Shrubland
  • Built-up area

Agriculture and forestry demands

  • Agriculture food
  • Agriculture food crops
  • Agriculture food livestock
  • Agriculture feed
  • Agriculture feed crops
  • Agriculture feed livestock
  • Agriculture non-food
  • Agriculture non-food crops
  • Agriculture non-food livestock
  • Agriculture bioenergy
  • Agriculture residues
  • Forest industrial roundwood
  • Forest fuelwood
  • Forest residues

Agricultural commodities

  • Wheat
  • Rice
  • Other coarse grains
  • Oilseeds
  • Sugar crops
  • Ruminant meat
  • Non-ruminant meat and eggs
  • Dairy products



Emission, climate and impacts

Greenhouse gases

  • CO2 fossil fuels
  • CO2 cement
  • CO2 land use
  • CH4 energy
  • CH4 land use
  • CH4 other
  • N2O energy
  • N2O land use
  • N2O other
  • CFCs
  • HFCs
  • SF6
  • PFCs

Pollutants

  • CO energy
  • CO land use
  • CO other
  • NOx energy
  • NOx land use
  • NOx other
  • VOC energy
  • VOC land use
  • VOC other
  • SO2 energy
  • SO2 land use
  • SO2 other
  • BC energy
  • BC land use
  • BC other
  • OC energy
  • OC land use
  • OC other
  • NH3 energy
  • NH3 land use
  • NH3 other

Climate indicators

  • Concentration: CO2
  • Concentration: CH4
  • Concentration: N2O
  • Concentration: Kyoto gases
  • Radiative forcing: CO2
  • Radiative forcing: CH4
  • Radiative forcing: N2O
  • Radiative forcing: F-gases
  • Radiative forcing: Kyoto gases
  • Radiative forcing: aerosols
  • Radiative forcing: land albedo
  • Radiative forcing: AN3A
  • Radiative forcing: total
  • Temperature change
  • Sea level rise
  • Ocean acidification

Carbon dioxide removal

  • Bioenergy with CCS
  • Reforestation
  • Afforestation
  • Soil carbon enhancement
  • Direct air capture
  • Enhanced weathering

Climate change impacts

  • Agriculture
  • Energy supply
  • Energy demand
  • Economic output
  • Built capital
  • Inequality

Co-Linkages

  • Energy security: Fossil fuel imports & exports (region)
  • Energy access: Household energy consumption
  • Air pollution & health: Source-based aerosol emissions
  • Air pollution & health: Health impacts of air Pollution
  • Food access
  • Water availability
  • Biodiversity