CitationResourcesExamples: Difference between revisions

From IAMC-Documentation
Jump to navigation Jump to search
No edit summary
No edit summary
Line 56: Line 56:
  |browselinks=no
  |browselinks=no
  |columns=1
  |columns=1
|header=Result
}}
}}
{{#scite:
{{#scite:
Line 108: Line 109:
  |browselinks=no
  |browselinks=no
  |columns=1
  |columns=1
|header=Result
}}
}}



Revision as of 15:03, 1 August 2016

{{#referencelist:

|references=van vuuren2013a;

vanVuuren2007; Denning:1991:CUA:102616; Zhai:2016:TDM:2915031; vanVuuren2014; Hof2012; APAexample1;|+sep=;

|listtype=ol
|browselinks=yes
|columns=1
|toc=yes

}}

Intro

A citation may be defined by bibtex exports or a set of property-value pairs. Surrounding the definition with:

{{#scite: ... }}

will interpret the definition into an citation text. The format depends on the type of the citation.

The examples below show the different types and their definitions and fields

Article definition

  • An article from a journal or magazine.
  • type = article | journal-article
  • Required fields: author, title, journal, year.
  • Optional fields: volume, number, pages, month, doi, note.

{{#scite: |reference=van vuuren2013a |type=Journal-article |title=A new scenario framework for Climate Change Research: scenario matrix architecture |author=Detlef P. van Vuuren;Elmar Kriegler;Brian C. O’Neill;Kristie L. Ebi;Keywan Riahi;Timothy R. Carter;Jae Edmonds;Stephane Hallegatte;Tom Kram;Ritu Mathur;Harald Winkler|+sep=; |journal=Climatic Change |publisher=Springer Science + Business Media |year=2013 |volume=122 |number=3 |pages=373-386 |doi=10.1007/s10584-013-0906-1 |subject=Atmospheric Science;Global and Planetary Change|+sep=; |issn=0165-0009;1573-1480|+sep=; }}

{{#scite: |reference=van vuuren2013a 
|type=Journal-article 
|title=A new scenario framework for Climate Change Research: scenario matrix architecture |author=Detlef P. van Vuuren;Elmar Kriegler;Brian C. O’Neill;Kristie L. Ebi;Keywan Riahi;Timothy R. Carter;Jae Edmonds;Stephane Hallegatte;Tom Kram;Ritu Mathur;Harald Winkler|+sep=; 
|journal=Climatic Change 
|publisher=Springer Science + Business Media 
|year=2013 
|volume=122 
|number=3 
|pages=373-386 
|doi=10.1007/s10584-013-0906-1 
|subject=Atmospheric Science;Global and Planetary Change|+sep=; 
|issn=0165-0009;1573-1480|+sep=; 
}}

{{#referencelist:

|references=van vuuren2013a
|browselinks=no
|columns=1
|header=Result

}} {{#scite: |bibtex= @Article{vanVuuren2007, author="van Vuuren, Detlef P. and den Elzen, Michel J. G. and Lucas, Paul L. and Eickhout, Bas and Strengers, Bart J. and van Ruijven, Bas and Wonink, Steven and van Houdt, Roy", title="Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs", journal="Climatic Change", year="2007", volume="81", number="2", pages="119--159", abstract="On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and -- subject to specific assumptions -- 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2{\%} of cumulative GDP to 1.1{\%} as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0{\%}--10{\%} to 20{\%}--70{\%}. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50{\%}, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.", issn="1573-1480", doi="10.1007/s10584-006-9172-9", url="http://dx.doi.org/10.1007/s10584-006-9172-9" } }}

{{#scite:
|bibtex=
@Article{vanVuuren2007,
author="van Vuuren, Detlef P.
and den Elzen, Michel J. G.
and Lucas, Paul L.
and Eickhout, Bas
and Strengers, Bart J.
and van Ruijven, Bas
and Wonink, Steven
and van Houdt, Roy",
title="Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs",
journal="Climatic Change",
year="2007",
volume="81",
number="2",
pages="119--159",
abstract="On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and -- subject to specific assumptions -- 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2{\%} of cumulative GDP to 1.1{\%} as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0{\%}--10{\%} to 20{\%}--70{\%}. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50{\%}, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.",
issn="1573-1480",
doi="10.1007/s10584-006-9172-9",
url="http://dx.doi.org/10.1007/s10584-006-9172-9"
} 
}}

{{#referencelist:

|references=van vanVuuren2007
|browselinks=no
|columns=1
|header=Result

}}


}} {{#scite: |bibtex= @book{Denning:1991:CUA:102616, editor = {Peter J. Denning}, title = {Computers Under Attack: Intruders, Worms, and Viruses}, year = {1990}, isbn = {0-201-53067-8}, source = {ACM member price \$21.50, order number 706900}, publisher = {ACM}, address = {New York, NY, USA}, } }}

{{#scite: |bibtex= @book{Zhai:2016:TDM:2915031,

author = {Zhai, ChengXiang and Massung, Sean},
title = {Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining},
year = {2016},
isbn = {978-1-97000-117-4},
publisher = {Association for Computing Machinery and Morgan & Claypool},
address = {New York, NY, USA},

} }} {{#scite:vanVuuren2014 |type=incollection |author=Detlef P. van Vuuren; Bas van Ruijven; David Gernaat; Harmen-Sytze de Boer|+sep=; |title=Energy conversion |year=2014 |chapter=4.1.2 |pages=89-98 |booktitle=Integrated assessment of global change with IMAGE 3.0 |editor=Elke Stehfest; Detlef van Vuuren;Tom Kram;Lex Bouwman|+sep=; |publisher=PBL Netherlands Environmental Assessment Agency |address=The Hague, Netherlands }}

{{#scite:Hof2012

|type=report
|author=A. F. Hof; C. Brink;A. Mendoza Beltrán; M. G. J. Den Elzen|+sep=;
|year=2012
|title=Greenhouse gas emission reduction targets for 2030: Conditions for a EU target of 40%
|institution=PBL Netherlands Environmental Assessment Agency
|address=The Hague, Netherlands

}}

{{#scite:APAexample1 |type=webpage |title=APA Citation Examples |year=2016 |url=http://www.umuc.edu/library/libhow/apa_examples.cfm |accessyear=2016 |accessdate=August 1 }}