GHGs - GCAM

From IAMC-Documentation
Revision as of 22:44, 1 September 2020 by Matthew Binsted (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Alert-warning.png Note: The documentation of GCAM is 'under review' and is not yet 'published'!

Model Documentation - GCAM

Corresponding documentation
Previous versions
No previous version available
Model information
Model link
Institution Pacific Northwest National Laboratory, Joint Global Change Research Institute (PNNL, JGCRI), USA, http://www.globalchange.umd.edu.
Solution concept General equilibrium (closed economy)GCAM solves all energy, water, and land markets simultaneously
Solution method Recursive dynamic solution method
Anticipation GCAM is a dynamic recursive model, meaning that decision-makers do not know the future when making a decision today. After it solves each period, the model then uses the resulting state of the world, including the consequences of decisions made in that period - such as resource depletion, capital stock retirements and installations, and changes to the landscape - and then moves to the next time step and performs the same exercise. For long-lived investments, decision-makers may account for future profit streams, but those estimates would be based on current prices. For some parts of the model, economic agents use prior experience to form expectations based on multi-period experiences.

CO2 Emissions

GCAM endogenously estimates CO2 fossil-fuel related emissions based on fossil fuel consumption and global emission factors by fuel (oil, unconventional oil, natural gas, and coal). These emission factors are consistent with global emissions by fuel from the CDIAC global inventory (CDIAC 2017).

GCAM can be considered as a process model for CO2 emissions and reductions. CO2 emissions change over time as fuel consumption in GCAM endogenously changes. Application of Carbon Capture and Storage (CCS) is explicitly considered as separate technological options for a number of processes, such as electricity generation and fertilizer manufacturing. GCAM, in effect, produces a Marginal Abatement Curve for CO2 as a carbon-price is applied within the model. Documentation for CO2 emissions can be found here.

Non-CO2 GHG Emissions

The non-CO2 greenhouse gases include methane (CH4), nitrous oxide (N2O) and fluorinated gases. These emissions, E, are modeled for any given technology in time period t as:

where:

F Emissions factor: base-year emissions per unit activity
A Activity level (e.g., output of a technology)
MAC Marginal Abatement Cost Curve
Cprice Carbon Price

Non-CO2 GHG emissions are proportional to the activity except for any reductions in emission intensity due to the MAC curve. As noted above, the MAC curves are assigned to a wide variety of technologies, mapped directly from EPA 2013. Under a carbon policy, emissions are reduced by an amount determined by the MAC curve. Documentation for non CO2 emissions can be found here.

Fluorinated Gases

Most fluorinated gas emissions are linked either to the industrial sector as a whole (e.g., semiconductor-related F-gas emissions are driven by growth in the “industry” sector), or population and GDP (e.g., fire extinguishers). As those drivers change, emissions will change. Additionally, we include abatement options based on EPA MAC curves. Documentation for fluorinated gas emissions can be found here.