Difference between revisions of "Model Documentation - MESSAGE-GLOBIOM"

From IAMC-Documentation
Jump to: navigation, search
(Replaced content with "{{ModelDocumentationTemplate |IsDocumentationOf=MESSAGE-GLOBIOM |IsEmpty=No |DocumentationCategory=Energy |HasLevel=0 |HasSeq=0 }}")
Line 6: Line 6:
 
|HasSeq=0
 
|HasSeq=0
 
}}
 
}}
=Energy (MESSAGE)=
 
 
MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental Impact) is a linear programming (LP) energy engineering model with global coverage. As a systems engineering optimization model, MESSAGE is used for medium- to long-term energy system planning, energy policy analysis, and scenario development (Messner and Strubegger, 1995 messner_users_1995). The model provides a framework for representing an energy system with all its interdependencies from resource extraction, imports and exports, conversion, transport, and distribution, to the provision of energy end-use services such as light, space conditioning, industrial production processes, and transportation. In addition, MESSAGE links to GLOBIOM (GLObal BIOsphere Model, cf. Section globiom) to consistently assess the implications of utilizing bioenergy of different types and to integrate the GHG emissions from energy and land use and to the aggregated macro-economic model MACRO (cf. Section macro) to assess economic implications and to capture economic feedbacks.
 
 
MESSAGE covers all greenhouse gas (GHG)-emitting sectors, including energy, industrial processes as well as - through its linkage to GLOBIOM - agriculture and forestry. The emissions of the full basket of greenhouse gases including CO2, CH4, N2O and F-gases (CF4, C2F6, HFC125, HFC134a, HFC143a, HFC227ea, HFC245ca and SF6) as well as other radiatively active gases, such as NOx, volatile organic compounds (VOCs), CO, SO2, and BC/OC is represented in hte model. MESSAGE is used in conjunction with MAGICC (Model for Greenhouse gas Induced Climate Change) version 6.8 (cf. Section magicc) for calculating atmospheric concentrations, radiative forcing, and annual-mean global surface air temperature increase.
 
 
The model is designed to formulate and evaluate alternative energy supply strategies consonant with the user-defined constraints such as limits on new investment, fuel availability and trade, environmental regulations and market penetration rates for new technologies. Environmental aspects can be analysed by accounting, and if necessary limiting, the amounts of pollutants emitted by various technologies at various steps in energy supplies. This helps to evaluate the impact of environmental regulations on energy system development.
 
 
It's principal results comprise, among others, estimates of technology-specific multi-sector response strategies for specific climate stabilization targets. By doing so, the model identifies the least-cost portfolio of mitigation technologies. The choice of the individual mitigation options across gases and sectors is driven by the relative economics of the abatement measures, assuming full temporal and spatial flexibility (i.e., emissions-reduction measures are assumed to occur when and where they are cheapest to implement).
 
 
The Reference Energy System (RES) defines the total set of available energy conversion technologies. In MESSAGE terms, energy conversion technology refers to all types of energy technologies from resource extraction to transformation, transport, distribution of energy carriers, and end-use technologies.
 
 
Because few conversion technologies convert resources directly into useful energy, the energy system in MESSAGE is divided into 5 energy levels:
 
 
* Resource (r) - raw resources (e.g., coal, oil, natural gas in the ground or biomass on the field)
 
* Primary (a) energy - raw product at a generation site (e.g., crude oil input to the refinery)
 
* Secondary (x) energy - finalized product at a generation site (e.g., gasoline or diesel fuel output from the refinery)
 
* Final (f) energy - finalized product at its consumption point (e.g., gasoline in the tank of a car or electricity leaving a socket)
 
* Useful (u) energy - finalized product satisfying demand for services (e.g., heating, lighting or moving people)
 
 
Technologies can take in from one level and put out at another level or on the same level. The energy forms defined in each level can be envisioned as a transfer hub, that the various technologies feed into or pump away from. The useful energy demand is given as a time series. Technologies can also vary per time period.
 
 
The mathematical formulation of MESSAGE ensures that the flows are consistent: demand is met, inflows equal outflows and constraints are not exceeded.
 

Revision as of 15:16, 12 August 2016

Model Documentation - MESSAGE-GLOBIOM

Corresponding documentation
Previous versions
Model information
Model link
Institution International Institute for Applied Systems Analysis (IIASA), Austria, http://data.ene.iiasa.ac.at.
Solution concept General equilibrium (closed economy)
Solution method Optimization
Anticipation

References

  1. ^  |  Oliver Fricko, Petr Havlik, Joeri Rogelj, Zbigniew Klimont, Mykola Gusti, Nils Johnson, Peter Kolp, Manfred Strubegger, Hugo Valin, Markus Amann, Tatiana Ermolieva, Nicklas Forsell, Mario Herrero, Chris Heyes, Georg Kindermann, Volker Krey, David L McCollum, Michael Obersteiner, Shonali Pachauri, Shilpa Rao, Erwin Schmid, Wolfgang Schoepp, Keywan Riahi (2016). The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century. Global Environmental Change, In press ().