From IAMC-Documentation
Jump to: navigation, search

Model Documentation - MESSAGE-GLOBIOM

Corresponding documentation
Previous versions
Model information
Model link
Institution International Institute for Applied Systems Analysis (IIASA), Austria,
Solution concept General equilibrium (closed economy)
Solution method Optimization

The response of the carbon-cycle and climate to anthropogenic climate drivers is modelled with the MAGICC model (Model for the Assessment of Greenhouse-gas Induced Climate Change). MAGICC is a reduced-complexity coupled global climate and carbon cycle model which calculates projections for atmospheric concentrations of GHGs and other atmospheric climate drivers like air pollutants, together with consistent projections of radiative forcing, global annual-mean surface air temperature, and ocean-heat uptake (Meinshausen et al., 2011a 1). MAGICC is an upwelling-diffusion, energy-balance model, which produces outputs for global- and hemispheric-mean temperature. MAGICC is most commonly used in a deterministic setup (Meinshausen et al., 2011b 2), but also a probabilistic setup (Meinshausen et al., 2009 3) is available which allows to estimate the probabilities of limiting warming to below specific temperature levels given a specified emissions path (Rogelj et al., 2013a 4; Rogelj et al., 2013b 5; Rogelj et al., 2015 6). Climate feedbacks on the global carbon cycle are accounted for through the interactive coupling of the climate model and a range of gas-cycle models. (Fricko et al., 2016 7)

For more information about the model, see


  1. ^  | |  Malte Meinshausen, SCB Raper, TML Wigley (2011). Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, {MAGICC}6–{Part} 1: {Model} description and calibration. Atmospheric Chemistry and Physics, 11 (4), 1417--1456.
  2. ^  | |  Malte Meinshausen, Steven J Smith, K Calvin, John S Daniel, MLT Kainuma, JF Lamarque, K Matsumoto, SA Montzka, SCB Raper, K Riahi (2011). The {RCP} greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change, 109 (1-2), 213--241.
  3. ^  | |   (). {Greenhouse-gas emission targets for limiting global warming to 2 {C. '.
  4. ^  | |  Joeri Rogelj, David L McCollum, Brian C O’Neill, Keywan Riahi (2013). 2020 emissions levels required to limit warming to below 2°C. Nature Climate Change, 3 (4), 405--412.
  5. ^  | |  Joeri Rogelj, David L McCollum, Andy Reisinger, Malte Meinshausen, Keywan Riahi (2013). Probabilistic cost estimates for climate change mitigation. Nature, 493 (7430), 79--83.
  6. ^  | |  Joeri Rogelj, Andy Reisinger, David L McCollum, Reto Knutti, Keywan Riahi, Malte Meinshausen (2015). Mitigation choices impact carbon budget size compatible with low temperature goals. Environmental Research Letters, 10 (7), 075003.
  7. ^  | |  Oliver Fricko, Petr Havlik, Joeri Rogelj, Zbigniew Klimont, Mykola Gusti, Nils Johnson, Peter Kolp, Manfred Strubegger, Hugo Valin, Markus Amann, Tatiana Ermolieva, Nicklas Forsell, Mario Herrero, Chris Heyes, Georg Kindermann, Volker Krey, David L McCollum, Michael Obersteiner, Shonali Pachauri, Shilpa Rao, Erwin Schmid, Wolfgang Schoepp, Keywan Riahi (2016). The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century. Global Environmental Change, In press ().