Non-biomass renewables - C3IAM: Difference between revisions

From IAMC-Documentation
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
C<sup>3</sup>IAM uses an additional production input called the ‘fixed factor’ to describes the representative capacity building constraint of energy technologies. The fixed factor is used to represent the specialized resources that are required for capacity building such as knowledgeable engineering, specialized manufacturing and services. The price of the fixed factor will therefore affect the rate at which this technology enters the market. If the demand for the technology is high, the fixed factor price representing the limited resources will also be high, thereby limiting the initial rate of expansion of production from new energy technologies and taking into consideration the adjustment costs <ref name=":0">Eleanor Charlotte Ereira, 2010. Assessing early investments in low carbon technologies under uncertainty: the case of Carbon Capture and Storage. ''Massachusetts Institute of Technology''.</ref>.
C<sup>3</sup>IAM uses an additional production input called the ‘fixed factor’ to describes the representative capacity building constraint of energy technologies. The fixed factor is used to represent the specialized resources that are required for capacity building such as knowledgeable engineering, specialized manufacturing and services. The price of the fixed factor will therefore affect the rate at which this technology enters the market. If the demand for the technology is high, the fixed factor price representing the limited resources will also be high, thereby limiting the initial rate of expansion of production from new energy technologies and taking into consideration the adjustment costs <ref name=":0">Eleanor Charlotte Ereira, 2010. Assessing early investments in low carbon technologies under uncertainty: the case of Carbon Capture and Storage. ''Massachusetts Institute of Technology''.</ref>.


The fixed factor also represents innovation in the form of learning-by-doing, which shows that the constraint is less binding as production and experience is gained. The representative agent is endowed with a very small amount of the particular fixed factor resource for each technology in the base year, <math>FF_t=0</math><ref name=":1">Henry D Jacoby, John M Reilly, James R McFarland, Sergey Paltsev, 2006. Technology and technical change in the MIT EPPA model. ''Energy Economics'' 28, 610-631.</ref>. The amount of fixed factor then is increased as a function of cumulative production of that technology, representing cost reduction as we learn and gain experience. The equation for endowment follows the form of Jacoby et al. (2005) <ref name=":1" /> and Ereira et al. (2010) <ref name=":0" />:
The fixed factor also represents innovation in the form of learning-by-doing, which shows that the constraint is less binding as production and experience is gained. The representative agent is endowed with a very small amount of the particular fixed factor resource for each technology in the base year<ref name=":1">Henry D Jacoby, John M Reilly, James R McFarland, Sergey Paltsev, 2006. Technology and technical change in the MIT EPPA model. ''Energy Economics'' 28, 610-631.</ref>, and<math>FF_t</math>for the base year is 0.00001 in the model. The amount of fixed factor then is increased as a function of cumulative production of that technology, representing cost reduction as we learn and gain experience. The equation for endowment follows the form of Jacoby et al. (2005) <ref name=":1" /> and Ereira et al. (2010) <ref name=":0" />:  
 
<br><br>
<br><br>



Revision as of 13:33, 5 August 2021

Model Documentation - C3IAM

Corresponding documentation
Previous versions
Model information
Model link
Institution Center for Energy and Environmental Policy Research, Beijing Institute of Technology (CEEP-BIT), China, http://ceep.bit.edu.cn/english/.
Solution concept General equilibrium (closed economy)
Solution method Optimization
Anticipation

C3IAM uses an additional production input called the ‘fixed factor’ to describes the representative capacity building constraint of energy technologies. The fixed factor is used to represent the specialized resources that are required for capacity building such as knowledgeable engineering, specialized manufacturing and services. The price of the fixed factor will therefore affect the rate at which this technology enters the market. If the demand for the technology is high, the fixed factor price representing the limited resources will also be high, thereby limiting the initial rate of expansion of production from new energy technologies and taking into consideration the adjustment costs [1].

The fixed factor also represents innovation in the form of learning-by-doing, which shows that the constraint is less binding as production and experience is gained. The representative agent is endowed with a very small amount of the particular fixed factor resource for each technology in the base year[2], andfor the base year is 0.00001 in the model. The amount of fixed factor then is increased as a function of cumulative production of that technology, representing cost reduction as we learn and gain experience. The equation for endowment follows the form of Jacoby et al. (2005) [2] and Ereira et al. (2010) [1]:





Where is the electricity output for a given technology in period t. a and b are coefficients that determine the rate of penetration for the technology, empirically found to reflect an energy technology adoption rate of quadratic form that results in the same qualitative ‘S-shape’ curve as penetration rates found in the literature. The share is set at 0.01 for all the advanced energy technologies except for Advanced Nuclear, for which it is 0.001. c is a product of the fixed factor share, the mark-up of the technology, and the reciprocal of the electricity price by region.
























References

  1. 1.0 1.1 Eleanor Charlotte Ereira, 2010. Assessing early investments in low carbon technologies under uncertainty: the case of Carbon Capture and Storage. Massachusetts Institute of Technology.
  2. 2.0 2.1 Henry D Jacoby, John M Reilly, James R McFarland, Sergey Paltsev, 2006. Technology and technical change in the MIT EPPA model. Energy Economics 28, 610-631.