Electricity - REMIND-MAgPIE

From IAMC-Documentation
Revision as of 20:03, 11 January 2017 by Robert Pietzcker (talk | contribs) (converted table with electricity generation technologies from image to table)
Jump to navigation Jump to search

Model Documentation - REMIND-MAgPIE

Corresponding documentation
Previous versions
Model information
Model link
Institution Potsdam Institut für Klimafolgenforschung (PIK), Germany, https://www.pik-potsdam.de.
Solution concept General equilibrium (closed economy)MAgPIE: partial equilibrium model of the agricultural sector;
Solution method OptimizationMAgPIE: cost minimization;
Anticipation

Around twenty electricity generation technologies are represented in REMIND, see Table 4, with several low-carbon (CCS) and zero carbon options (nuclear and renewables).


Table 4. Energy Conversion Technologies for Electricity (Note: † indicates that technologies can be combined with CCS). <figtable id="tab:REMIND_electricity_technologies">

Energy Conversion Technologies for Electricity
Energy Carrier Technology
Primary exhaustible resource
Coal
  • Conventional coal power plant
  • Integrated coal gasification combined cycle†
  • Coal combined heat and power plant
Oil
  • Diesel oil turbine
Gas
  • Gas turbine
  • Natural gas combined cycle†
  • Gas combined heat and power plant
Uranium
  • Light water reactor
Primary renewable resource
Solar
  • Solar photovoltaic
  • Concentrating solar power
Wind
  • Wind turbine
Hydropower
  • Hydropower
Biomass
  • Integrated biomass gasification combined cycle†
  • Biomass combined heat and power plant
Geothermal
  • Hot dry rock
Secondary energy type
Hydrogen
  • Hydrogen turbine

</figtable>

54067596.jpg

Table 5. Techno-economic characteristics of technologies based on exhaustible energy sources and biomass (Iwasaki 2003; Hamelinck 2004; Bauer 2005; Ansolabehere et al. 2007; Gül et al. 2007; Ragettli 2007; Schulz 2007; Uddin and Barreto 2007; Rubin et al. 2007; Takeshita and Yamaji 2008; Brown et al. 2009; Klimantos et al. 2009; Chen and Rubin 2009).

Remind Table 5.PNG

For abbreviations see Table Acronyms and Abbreviations ; * for joint production processes; § nuclear reactors with thermal efficiency of 33%; # technologies with exogenously improving efficiencies. 2005 values are represented by the lower end of the range. Long-term efficiencies (reached after 2045) are represented by high-end ranges.

For variable renewable energies, we implemented two parameterized cost markup functions for storage and long-distance transmission grids - see Section Grid and Infrastructure. To represent the general need for flexibility even in a thermal power system, we included a further flexibility constraint based on Sullivan et al. (2013).

The techno-economic parameters of power technologies used in the model are given in Table 5 for fuel-based technologies and Table 6 for non-biomass renewables. For wind, solar and hydro, capacity factors depend on grades, see Section Non-biomass renewables.

Table 6. Techno-economic characteristics of technologies based on non-biomass renewable energy sources (Neij et al. 2003; Nitsch et al. 2004; IEA 2007a; Junginger et al. 2008; Pietzcker et al. 2014).

Remind Table 6.PNG